top of page

GFZ-GEM Phase 2 Publication List


2019

Mak S, Cotton F, Schorlemmer D, Hirata N (2019) Testing the Official Seismic Hazard Model for Japan. Nature Geoscience: submitted

2018

Chen, Y, Weatherill, G, Pagani, M, Cotton, F (2018): A transparent and data-driven global tectonic regionalisation model for seismic hazard assessment. - Geophysical Journal International, 213, 2, pp. 1263-1280.

Mak S, Cotton F, Gerstenberger M, Schorlemmer D (2018): An Evaluation of the Applicability of NGA‐West2 Ground‐Motion Models for Japan and New Zealand. Bulletin of the Seismological Society of America 108(2): 836-856. DOI: http://doi.org/10.1785/0120170146

Schorlemmer D, Werner MJ, Marzocchi W, Jordan TH, Ogata Y, Jackson DD, Mak S, Rhoades DA, Gerstenberger MC, Hirata N, Liukis M, Maechling PJ, Strader A, Taroni M, Wiemer S, Zechar JD, Zhuang J (2018): The Collaboratory for the Study of Earthquake Predictability: Achievements and Priorities. Seismological Research Letters 89(3): in print

Strader A, Werner M, Bayona J, Maechling P, Silva F, Liukis M, Schorlemmer D (2018): Prospective evaluation of global earthquake forecast models: Two years of observations support merging smoothed seismicity with geodetic strain rates. Seismological Research Letters 89(3): in print

Taroni M, Marzocchi W, Schorlemmer D, Werner MJ, Wiemer S, Zechar JD, Heiniger L, Euchner F (2018): Prospective CSEP evaluation of 1-day, 3-month, and 5-year earthquake forecasts for Italy. Seismological Research Letters 89(3): in print

2017

Mak S, Clements R, Schorlemmer D (2017): Empirical Evaluation of Hierarchical Ground‐Motion Models: Score Uncertainty and Model Weighting. Bulletin of the Seismological Society of America 107(2): 949-965. DOI: http://doi.org/10.1785/0120160232

Mak S, Clements RA, Schorlemmer D (2017): Empirical Evaluation of Hierarchical Ground-Motion Models: Score Uncertainty and Model Weighting. Bulletin of the Seismological Society of America 107(2): 949-965. DOI: http://doi.org/10.1785/0120160232

Mak S, Cotton F, Schorlemmer D (2017): Measuring the Performance of Ground‐Motion Models: The Importance of Being Independent. Seismological Research Letters 88: 1212-1217. DOI: http://doi.org/10.1785/0220170097

Pittore M, Wieland M, Fleming K (2017): Perspectives on global dynamic exposure modelling for geo-risk assessment. Natural Hazards 86(Suppl. 1): 7-30.

Strader A, Schneider M, Schorlemmer D (2017): Prospective and retrospective evaluation of five-year earthquake forecast models for California. Geophysical Journal International 211(1): 239-251. DOI: http://doi.org/10.1093/gji/ggx268

2016

Mai PM, Schorlemmer D, Page M, Ampuero JP, Asano K, Causse M, Custodio S, Fan WY, Festa G, Galis M, Gallovic F, Imperatori W, Kaeser M, Malytskyy D, Okuwaki R, Pollitz F, Passone L, Razafindrakoto HNT, Sekiguchi H, Song SG, Somala SN, Thingbaijam KKS, Twardzik C, van Driel M, Vyas JC, Wang RJ, Yagi Y, Zielke O (2016): The Earthquake-Source Inversion Validation (SIV) Project. Seismological Research Letters 87(3): 690-708. DOI: http://doi.org/10.1785/0220150231

Mak S, Clements R, Schorlemmer D (2016): Reply to “Comment on ‘Validating Intensity Prediction Equations for Italy by Observations’ by Sum Mak, Robert Alan Clements, and Danijel Schorlemmer” by Mathias Raschke. Bulletin of the Seismological Society of America 106(5): 2414-2415. DOI: http://doi.org/10.1785/0120160200

Mak S, Schorlemmer D (2016): A Comparison between the Forecast by the United States National Seismic Hazard Maps with Recent Ground‐Motion Records. Bulletin of the Seismological Society of America 106(4): 1817-1831. DOI: http://doi.org/10.1785/0120150323

Mak S, Schorlemmer D (2016): Erratum to Validating Intensity Prediction Equations for Italy by Observations. Bulletin of the Seismological Society of America 106(2): 813-813. DOI: http://doi.org/10.1785/0120150358

Mak S, Schorlemmer D (2016): What Makes People Respond to “Did You Feel It?”?. Seismological Research Letters 87(1): 119-131. DOI: http://doi.org/10.1785/0220150056

Wieland M, Pittore M (2016): Large-area settlement pattern recognition from Landsat-8 data. ISPRS Journal of Photogrammetry and Remote Sensing 119: 294–308.

2015

Bindi D, Boxberger T, Orunbaev S, Pilz M, Stankiewicz J, Pittore M, Iervolino I, Ellguth E, Parolai S (2015): On-site early-warning system for Bishkek (Kyrgyzstan). Annals of Geophysics 58(1): S0112.

Gordon JS, Clements RA, Schoenberg FP, Schorlemmer D (2015): Voronoi residuals and other residual analyses applied to CSEP earthquake forecasts. Spatial Statistics 14: 133-150, Part: B. DOI: http://doi.org/10.1016/j.spasta.2015.06.001

Mak S, Clements R, Schorlemmer D (2015): Validating Intensity Prediction Equations for Italy by Observations. Bulletin of the Seismological Society of America 105(6): 2942-2954. DOI: http://doi.org/10.1785/0120150070

Mak S, Clements RA, Schorlemmer D (2015): Validating Intensity Prediction Equations for Italy by Observations. Bulletin of the Seismological Society of America 105(6): 2942-2954. DOI: http://doi.org/10.1785/0120150070

Mikhailova NN, Mkambayev AS, Aristova IL, Kulikova G, Ullah S, Pilz M, Bindi D (2015): Central Asia earthquake catalogue from ancient time to 2009. Annals of Geophysics 58(1): S0102.

Pittore M (2015): Focus maps: a means of prioritizing data collection for efficient geo-risk assessment. Annals of Geophysics 58(1): S0107.

Saponaro A, Pilz M, Bindi D, Parolai S (2015): The contribution of EMCA to landslide susceptibility mapping in Central Asia. Annals of Geophysics 58(1): S0113.

Stankiewicz J, Bindi D, Oth A, Parolai S (2015): Toward a cross-border early-warning system for Central Asia. Annals of Geophysics 58(1): S0111.

Ullah S, Bindi D, Pilz M, Parolai S. (2015): Probabilistic seismic hazard assessment for Central Asia. Annals of Geophysics 58(1): S0103.

Wieland M, Pittore M, Parolai S, Begaliev U, Yasunov P, Tyagunov S, Moldobekov B, Saidiy S, Ilyasov I, Abakanov T (2015): A Multiscale Exposure Model for Seismic Risk Assessment in Central Asia. Seismological Research Letters 86(1): 210–222.

2014

Holschneider M, Zoeller G, Clements R, Schorlemmer D (2014): Can we test for the maximum possible earthquake magnitude? Journal of Geophysical Research-Solid Earth 119(3): 2019-2028. DOI: http://doi.org/10.1002/2013JB010319

Mak S, Clements R, Schorlemmer D (2014): Comment on "A New Procedure for Selecting and Ranking Ground-Motion Prediction Equations (GMPEs): The Euclidean Distance-Based Ranking (EDR) Method" by Ozkan Kale and Sinan Akkar. Bulletin of the Seismological Society of America 104(6): 3139-3140. DOI: http://doi.org/10.1785/0120140106

Mak S, Clements R, Schorlemmer D (2014): The Statistical Power of Testing Probabilistic Seismic-Hazard Assessments. Seismological Research Letters 85(4): 781-783. DOI: http://doi.org/10.1785/0220140012

Mak S, Clements RA, Schorlemmer D (2014): Comment on "A New Procedure for Selecting and Ranking Ground-Motion Prediction Equations (GMPEs): The Euclidean Distance-Based Ranking (EDR) Method" by Ozkan Kale and Sinan Akkar. Bulletin of the Seismological Society of America 104(6): 3139-3140. DOI: http://doi.org/10.1785/0120140106

Mak S, Clements RA, Schorlemmer D (2014): The Statistical Power of Testing Probabilistic Seismic-Hazard Assessments. Seismological Research Letters 85(4): 781-783. DOI: http://doi.org/10.1785/0220140012

Pittore M, Bindi D, Stankiewicz J, Oth A, Wieland M, Boxberger T, Parolai S (2014): Toward a Loss-Driven Earthquake Early Warning and Rapid Response System for Kyrgyzstan (Central Asia). Seismological Research Letters 85(6): 1328–1340.

Rhoades DA, Gerstenberger MC, Christophersen A, Zechar JD, Schorlemmer D, Werner MJ, Jordan TH (2014): Regional Earthquake Likelihood Models II: Information Gains of Multiplicative Hybrids. Bulletin of the Seismological Society of America 104(6): 3072-3083. DOI: http://doi.org/10.1785/0120140035

Schneider M, Clements R, Rhoades D, Schorlemmer D (2014): Likelihood- and residual-based evaluation of medium-term earthquake forecast models for California. Geophysical Journal International 198(3): 1307-1318. DOI: http://doi.org/10.1093/gji/ggu178

Wieland M, Pittore M (2014): Performance Evaluation of Machine Learning Algorithms for Urban Pattern Recognition from Multi-spectral Satellite Images. Remote Sensing 6(4): 2912–2939.


More...

bottom of page